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Variation in event-related potentials (ERPs) has long been a
topic of discussion, but primarily as an inconvenient byproduct
of noisy physiological measurement. Most ERP research uses
the signal averaging approach to remove variability assumed
to be noise by averaging the raw ERP response across
repeated trials. This process removes trial-to-trial variation and
maintains what is thought to be signal specific to the event
(stimulus or response), producing averaged waveforms for
each experimental condition within each participant. Re-
searchers have developed strategies for assessing the quality
of averaged waveforms (1,2) and guidelines for how many trials
should be included in an averaged waveform (3) and have
addressed other psychometric concerns within the signal-
averaging approach (4). Importantly, the signal-averaging
approach assumes that the underlying stimulus or response-
locked signal is constant across trials and represents some
essential unvarying psychological process. However, it is
extremely unlikely that any psychological process of interest is
elicited in exactly the same way across trials because of
varying properties of the stimulus or response, learning or
habituation, fatigue over the course of a long experimental
task, or random fluctuations in engagement. Thus, examining
meaningful variability in ERPs can be an extremely useful tool
in understanding how psychophysiological processes of in-
terest vary.

Several approaches have been developed to examine
meaningful variation in single- trial ERPs, including multilevel
modeling approaches (5,6). Multilevel modeling has become
an increasingly popular statistical technique in ERP research,
especially when examining single-trial ERPs, because of its
flexibility and power. Multilevel models can account for
different sources of variance in ERPs, including participants,
electrodes, or items, by including these sources in the model
as random factors. Variance in the outcome accounted for by
random factors is estimated along with the fixed effects of any
predictors included in the model. When applied to single-trial
ERPs, partitioning of random and fixed effects isolates signal
from noise as the signal-averaging approach does, bypassing
the need to first average across trials before any analysis is
done. In addition, multilevel models are able to 1) accommo-
date unbalanced data, which is common when different
numbers of trials are rejected or accepted for different partic-
ipants during the cleaning process, 2) include trial-level pre-
dictors, and 3) include both continuous and categorical
predictors (7).

Although traditional multilevel models explicitly estimate
variance in ERP responses as a function of random factors
(e.g., quantifying the amount of between-person variance)

along with the fixed effects, they are unable to examine how
specific predictors or covariates contribute to variation in ERPs
across trials. In the current issue of Biological Psychiatry:
Cognitive Neuroscience and Neuroimaging, Clayson et al. (8)
address this problem and propose a novel application of
location-scale multilevel models that extend traditional multi-
level models in a key way. Traditional models, which can be
thought of as location-only models, provide estimates of the
fixed and random effects on the conditional or marginal means
of the outcome. The fixed effects examine differences in the
model-estimated means across different levels of the pre-
dictors. Using the error-related negativity (ERN) component as
an example, this might be the fixed effect of response type on
ERN amplitude, such that the conditional mean for ERN
amplitude across the sample is higher after error responses
relative to correct responses. Traditional multilevel models also
provide estimates of the random effects for the conditional
means, which describe the variance in conditional means
across levels of a random factor. For example, if participants
are used as a random factor, the model would estimate how
much each participant’s average ERN (adjusted by the model)
varies across participants. These fixed and random effects
constitute a location-only multilevel model.

Location-scale models extend location-only models by
additionally estimating fixed and random effects for the re-
sidual variance, which constitute the scale portion of the
model. In other words, location-scale models estimate how the
residual variance surrounding the conditional means varies as
a function of other variables (fixed and random). Using the
previous example of the ERN, the fixed effect of response type
in the location portion of the model estimates the difference in
the conditional means of the ERN across correct and error
responses, whereas the fixed effect of response type in the
scale portion of the model estimates how residual variance
around the conditional mean (i.e., how much the ERN varies
from trial to trial) differs between correct and error responses.
By modeling effects of fixed effects on residual variance, we
might see that there is more variability in error responses than
correct responses or vice versa. In addition to expanding the
fixed effects, location-scale models also estimate random ef-
fects on residual variance, such as how variability in ERN re-
sponses varies across levels of a random factor (e.g., how
variability in the ERN differs across participants if participant is
included as a random factor). Because of the explicit modeling
of fixed and random effects on the variance around the con-
ditional means in this way, location-scale models provide a
powerful tool to examine how different factors influence vari-
ance in ERP responses.
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Using these models, Clayson et al. (8) make a significant
contribution to our understanding of how the ERN varies from
trial to trial and how this variation may be meaningful (or not)
for clinical groups. Specifically, they compare variability in the
ERN across three psychopathology groups (major depressive
disorder, generalized anxiety disorder, and obsessive-
compulsive disorder) along with healthy control subjects.
Previous research has examined how individuals’ mean ERN
amplitude differs according to clinical diagnoses with mixed
results. By using location-scale models, Clayson et al. (8)
extend previous research by examining how within-person
variability in ERN amplitude may differ as a function of clin-
ical diagnosis. The authors use a procedure of model selection
to compare location-only models with their corresponding
location-scale models to determine the benefit of modeling
variability in ERN responses in addition to conditional means of
ERN responses. They compare several pairs of location-only
and location-scale models that include different predictors to
determine the relative contribution of response type, clinical
diagnosis, and measured psychiatric symptoms in predicting
both conditional means (i.e., location) and variance around the
mean (i.e., scale).

Through model comparison, the authors find evidence of
important intraindividual differences in variability in the ERN
(i.e., that variance in ERN amplitude differs from person to
person) and evidence that this variability also differs as a
function of response type (correct and error responses). Spe-
cifically, ERNs elicited in error trials varied more than re-
sponses elicited in correct trials, suggesting that conflict
processing is more variable when participants make mistakes
in the flanker task relative to successful task performance.
Interestingly, variability in an individual’s ERN amplitude was
not predicted by clinical diagnosis or group, suggesting that
individuals with major depressive disorder, generalized anxiety
disorder, or obsessive-compulsive disorder do not differ from
healthy control subjects in how much their ERN varies from
trial to trial. Despite the null result, Clayson et al. (8) highlight
the importance of estimating and examining intraindividual
variability to understand what factors meaningfully predict (or
do not predict) variability. Although clinical diagnosis or psy-
chiatric symptoms do not seem to predict individual variation
in ERN responses, other important factors may, which is
important for understanding processes related to conflict
monitoring across people.

Application of this approach can positively contribute to
understanding variability in other areas of cognition, with and
without clinical implications. For example, researchers could
examine how specific attributes of faces contribute to trial-to-
trial variability in processing those faces (one possibility is that
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processing of outgroup faces is more variable than processing
of ingroup faces or vice versa), or how variation in language-
specific processing differs across dominant and nondomi-
nant languages among bilingual subjects owing to differences
in reading automatization. Although the statistical expertise
needed to appropriately fit and interpret these models is not
trivial, | hope these approaches become more widely used.
Examining meaningful variation in ERPs from trial to trial is
essential in understanding how psychological processes that
underlie physiological signal vary, what that variation may
depend on, and what it predicts.
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